Blowup Properties for Parabolic Equations Coupled via Non-standard Growth Sources†
نویسندگان
چکیده
This paper deals with parabolic equations coupled via nonstandard growth sources, subject to homogeneous Dirichlet boundary conditions. Three kinds of necessary and sufficient conditions are obtained, which determine the complete classifications for non-simultaneous and simultaneous blowup phenomena. Moreover, blowup rates are given. AMS Mathematics Subject Classification : 35K05, 35K60, 35B40, 35B33.
منابع مشابه
Blowup solutions and their blowup rates for parabolic equations with non-standard growth conditions
This paper concerns classical solutions for homogeneous Dirichlet problem of parabolic equations coupled via exponential sources involving variable exponents. We first establish blowup criteria for positive solutions. And then, for radial solutions, we obtain optimal classification for simultaneous and non-simultaneous blowup, which is represented by using the maxima of the involved variable ex...
متن کاملDynamics of the convergence towards a self-similar blowup solution in a simplified model of aggregation
The dynamics of the finite-time blowup solutions of a parabolic–elliptic system of partial differential equations is studied. These equations arise when modelling chemotactic aggregation or a dissipative gravitational collapse. Radial self-similar blowup solutions on a bounded domain are analysed by perturbing the known analytic solutions of the corresponding unbounded problem. The dynamics fol...
متن کاملBlowup Rate Estimate for a System of Semilinear Parabolic Equations
In this paper, we study the blowup rate estimate for a system of semilinear parabolic equations. The blowup rate depends on whether the two components of the solution of this system blow up simultaneously or not.
متن کاملA note on blow-up in parabolic equations with local and localized sources
This note deals with the systems of parabolic equations with local and localized sources involving $n$ components. We obtained the exponent regions, where $kin {1,2,cdots,n}$ components may blow up simultaneously while the other $(n-k)$ ones still remain bounded under suitable initial data. It is proved that different initial data can lead to different blow-up phenomena even in the same ...
متن کاملA Composite Finite Difference Scheme for Subsonic Transonic Flows (RESEARCH NOTE).
This paper presents a simple and computationally-efficient algorithm for solving steady two-dimensional subsonic and transonic compressible flow over an airfoil. This work uses an interactive viscous-inviscid solution by incorporating the viscous effects in a thin shear-layer. Boundary-layer approximation reduces the Navier-Stokes equations to a parabolic set of coupled, non-linear partial diff...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013